South East Asian J. of Mathematics and Mathematical Sciences Vol. 17, No. 2 (2021), pp. 141-152

ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

FUZZY PRE- γ -COMPACT, FUZZY PRE- γ -CONNECTED AND FUZZY PRE- γ -CLOSED SPACES

C. Sivashanmugaraja

Department of Mathematics, Periyar Government Arts College, Cuddalore, Tamil Nadu - 607001, INDIA

E-mail: csrajamaths@yahoo.co.in

(Received: Sep. 18, 2020 Accepted: Jun. 29, 2021 Published: Aug. 30, 2021)

Abstract: Compactness and connectedness play a crucial role in Topology. In this paper, we introduce concepts of fuzzy pre- γ -compact, fuzzy pre- γ -connected and fuzzy pre- γ -closed spaces by using concepts of fuzzy pre- γ -open sets. Then we study their properties and compare them.

Keywords and Phrases: Fuzzy pre- γ -open sets, fuzzy pre- γ -compact, fuzzy pre- γ -connected, fuzzy pre- γ -closed spaces.

2020 Mathematics Subject Classification: 54A05, 54A40, 54D05, 54D30.

1. Introduction

The notion of fuzzy sets was introduced by Zadeh in his paper [12]. By using the concept of fuzzy sets, Chang [1] introduced the idea of fuzzy topological space. The notion of fuzzy sets has been used by many researchers to several branches of Mathematics. Kasahara [7] defined the notion of an operation γ on a topological space. Kalitha and Das [6] introduced and investigated the operation γ on fuzzy topological spaces. The notion of pre- γ -open sets in general topological spaces was defined by Ibrahim [5]. Recently Sivashanmugaraja and Vadivel [11] introduced the notion of pre- γ -open fuzzy sets in fuzzy topological spaces. The aim of this paper is devoted to introduce and investigate the notion of pre- γ -compact, pre- γ -connected and pre- γ -closed spaces in fuzzy setting. Also we establish some basic theorems about it.

2. Preliminaries

Throughout this paper (X, τ_X) or simply X always mean a fuzzy topological space (fts, for short). The interior, the closure and complement of a fuzzy set $A \in I^X$ will be denoted by int(A), cl(A) and A^c respectively. By $\underline{0}$ and $\underline{1}$ we mean the constant fuzzy sets taking on the values 0 and 1 respectively. Now we recall some of the basic definitions.

Definition 2.1. [6] Let (X, τ_X) be a fuzzy topological space. A fuzzy operation γ on the topology τ_X is a mapping from τ into set I^X such that $\lambda \subseteq \gamma(\lambda)$, $\forall \lambda \in \tau_X$ where $\gamma(\lambda)$ denotes the value of γ at V. The mapping defined as $\gamma(\lambda) = \lambda$, $\gamma(\lambda) = cl(\lambda)$, $\gamma(\lambda) = int(cl(\lambda))$., etc are examples of fuzzy operations.

Definition 2.2. [6] A fuzzy subset λ of (X, τ_X) is called a fuzzy γ -open, if $\forall p_x^{\lambda} q \lambda$, $\exists a \mu \in \tau \text{ and } p_x^{\lambda} q \mu \text{ such that } \gamma(\mu) \leq \lambda$. τ_{γ} denotes the set of all γ -open fuzzy sets. Clearly we have $\tau_{\gamma} \subseteq \tau_X$.

Definition 2.3. A fuzzy set λ of a fts X is called fuzzy pre- γ -open [11] if $\lambda \leq \tau_{\gamma}$ -int(cl(λ)). A fuzzy set λ of a fts X is called fuzzy pre- γ -closed [9] iff its complement is fuzzy pre- γ -open. The family of all pre- γ -open and pre- γ -closed fuzzy sets are denoted by $FP_{\gamma}O(X)$ and $FP_{\gamma}C(X)$ respectively.

Definition 2.4. [9] Let λ be a fuzzy subset of (X, τ) . Then:

- (i) The union of all fuzzy pre- γ -open sets contained in λ is called the fuzzy pre- γ -interior of λ , denoted by $pint_{\gamma}(\lambda)$. i.e., $pint_{\gamma}(\lambda) = \bigvee \{ \mu < \lambda : \mu \in FP_{\gamma}O(X) \}.$
- (ii) The intersection of all fuzzy pre- γ -closed sets containing λ is called the fuzzy pre- γ -closure of λ , denoted by $pcl_{\gamma}(\lambda)$. i.e., $pcl_{\gamma}(\lambda) = \wedge \{\mu \geq \lambda : \mu \in FP_{\gamma}C(X)\}.$

Definition 2.5. [4] A collection of fuzzy subsets \mathcal{P} of a fts (X, τ) is called to form a fuzzy filterbases iff for every finite collection $\{Q_i : i = 1, 2, ..., n\}, \bigwedge_{i=1}^n Q_i \neq \underline{0}.$

Definition 2.6. [1] A mapping $f:(X, \tau_X) \to (Y, \tau_Y)$ is called fuzzy continuous, if $f^{-1}(\mu)$ is an open fuzzy set of X, \forall open fuzzy set μ of Y.

Definition 2.7. [10] A mapping $f:(X, \tau) \to (Y, \sigma)$ is said to be fuzzy pre- γ -irresolute (or pre*- γ -continuous), if $f^{-1}(\lambda)$ is pre- γ -open fuzzy set of X, \forall pre- γ -open fuzzy set λ of Y.

Definition 2.8. [8] A mapping $f:(X, \tau_X) \to (Y, \tau_Y)$ is called fuzzy $pre^*-\gamma$ -open, if the image of each pre- γ -open fuzzy set of (X, τ_X) is pre- γ -open fuzzy set in

Fuzzy Pre- γ -Compact, Fuzzy Pre- γ -Connected and Fuzzy Pre- γ -Closed Spaces 143

 $(Y, \tau_Y).$

3. Fuzzy Pre- γ -Compact Spaces

In this section, we introduce notions of fuzzy pre- γ -compact, fuzzy pre- γ -compact relative to X, fuzzy locally pre- γ -compact and discuss some fundamental theorems about it.

Definition 3.1. Let (X, τ_X) be a fts and γ be a fuzzy operation on τ_X . A collection \mathcal{A} of pre- γ -open fuzzy subsets of a fts X is said to pre- γ -open cover X or to be a pre- γ -open covering of X, if $\bigvee_{B \in \mathcal{A}} B = \underline{1}$.

Definition 3.2. Let (X, τ_X) be a fts and γ be a fuzzy operation on τ_X . Then X is called fuzzy pre- γ -compact if each pre- γ -open covering A of X contains a finite sub collection that also covers X.

Example 3.1. Any fuzzy topological space (X, τ_X) containing only finitely many pre- γ -open fuzzy sets is necessarily fuzzy pre- γ -compact, since in this case each pre- γ -open fuzzy sets covering of X is finite.

Definition 3.3. Let (X, τ_X) be a fts and γ be a fuzzy operation on τ_X . A fuzzy set λ in X is called fuzzy pre- γ -compact relative to X iff \forall collection \mathcal{A} of pre- γ -open fuzzy sets such that $(\bigvee_{\mu \in \mathcal{A}} \mu) \geq \lambda(x)$, there is a finite subcollection \mathcal{B} of \mathcal{A} such that $(\bigvee_{\mu \in \mathcal{A}} \mu) \geq \lambda(x)$, $\forall x \in S(\lambda)$.

Theorem 3.1. A fts X is fuzzy pre- γ -compact iff each collection $\{C_i : i \in J\}$ of pre- γ -closed fuzzy sets of X having the finite intersection property, $(\bigwedge_{i \in J} C_i) \neq \underline{0}$.

Proof. Let X be a fuzzy pre- γ -compact and the collection $\{C_i : i \in J\}$ of pre- γ -closed fuzzy sets having the finite intersection property. Assume that $(\bigwedge_{i \in J} C_i) = \underline{0}$.

Then $(\bigvee_{i\in J} \overline{C_i}) = \underline{1}$. By hypothesis $\{\overline{C_i}: i\in J\}$ is a collection of pre- γ -open fuzzy sets covering X, then by definition of pre- γ -compactness of X, it follows that then \exists a finite subset I of J such that $(\bigvee_{i\in I} \overline{C_i}) = \underline{1}$. Therefore $(\bigwedge_{i\in I} C_i) = \underline{0}$, which is a contradiction to our assumption. Hence $(\bigwedge_{i\in I} C_i) \neq \underline{0}$.

Conversely, let the collection $\{C_i : i \in J\}$ of pre- γ -open fuzzy sets covering X. Assume that for each finite fuzzy subset I of J, we have $(\bigvee_{i \in I} C_i) \neq \underline{1}$. Therefore $(\bigwedge_{i \in I} (\overline{C_i})) \neq \underline{0}$. Thus $\{\overline{C_i} : i \in J\}$ satisfies the finite intersection property. Therefore by hypothesis, we obtain $(\bigwedge_{i \in J} \overline{C_i}) \neq \underline{0}$. which implies $(\bigvee_{i \in I} C_i) \neq \underline{1}$. This is a contra-

diction to our assumption $\{C_i : i \in J\}$ is a pre- γ -open fuzzy set cover of X. Hence X is fuzzy pre- γ -compact.

Theorem 3.2. A fts X is fuzzy pre- γ -compact iff each fuzzy filterbases \mathcal{P} in X, $(\bigwedge_{H \in \mathcal{P}} pcl_{\gamma}(H)) \neq \underline{0}$.

Proof. Let \mathcal{A} be a fuzzy pre- γ -open cover which has no finite sub-cover in X. Then \forall finite sub collection of $\{\mathcal{B}_1, \mathcal{B}_2, ..., \mathcal{B}_n\}$ of \mathcal{A} , $\exists x \in X$ such that $\mathcal{B}_i(x) < 1$, $\forall i = 1, 2, ..., n$. Therefore $\overline{\mathcal{B}}_i(x) \geq 0$, so that $(\bigwedge_{i=1}^n \overline{\mathcal{A}}_i(x)) \neq \underline{0}$. Hence $\{\overline{\mathcal{B}}_i(x) : \mathcal{B}_i \in \mathcal{A}\}$ forms a filterbases in X. Since \mathcal{A} is pre- γ -open fuzzy set cover of X, $(\bigvee_{\mathcal{B}_i \in \mathcal{A}} pcl_{\gamma}(\mathcal{B}_i))(x) = (\bigvee_{\mathcal{B}_i \in \mathcal{A}} \mathcal{B}_i)(x) = \underline{1}$, $\forall x \in X$ and thus $\bigwedge_{\mathcal{B}_i \in \mathcal{A}} pcl_{\gamma}(\overline{\mathcal{B}}_i)(x) = \bigwedge_{\mathcal{B}_i \in \mathcal{A}} \overline{\mathcal{B}}_i(x) = \underline{0}$, which is a contradiction. Then each pre- γ -open fuzzy set cover of X has a finite subcover and thus X is fuzzy pre- γ -compact.

Conversely, assume that \exists a filterbases \mathcal{P} in X, such that $\bigwedge_{\mathcal{H} \in \mathcal{P}} pcl_{\gamma}(\mathcal{H}) = \underline{0}$, so that $(\bigvee_{\mathcal{H} \in \mathcal{P}} \overline{pcl_{\gamma}(\mathcal{H})})(x) = \underline{1}$, $\forall x \in X$ and thus $\mathcal{A} = \{\overline{pcl_{\gamma}(\mathcal{H})} : \mathcal{H} \in \mathcal{A}\}$ is a fuzzy pre- γ -open fuzzy set cover of X. Since X is fuzzy pre- γ -compact, we obtain \mathcal{P} has a finite subcover. Therefore $(\bigvee_{i=1}^{n} \overline{pcl_{\gamma}(\mathcal{H}_{i})})(x) = \underline{1}$ and thus $(\bigvee_{i=1}^{n} \overline{(\mathcal{H}_{i})})(x) = \underline{1}$, so that $\bigwedge_{i=1}^{n} (\mathcal{H}_{i}) = \underline{0}$, which is a contradiction. Thus $\bigwedge_{\mathcal{H} \in \mathcal{P}} pcl_{\gamma}(\mathcal{H}) \neq \underline{0}$, \forall filterbases \mathcal{P} .

Theorem 3.3. A fuzzy set λ in a fts X is fuzzy pre- γ -compact relative to X iff each filterbase $\mathcal P$ such that each finite members of $\mathcal P$ is quasi coincident with C, $(\bigwedge_{H \in \mathcal P} pcl_{\gamma}(H)) \wedge C \neq \underline{0}$.

Proof. If possible assume that λ is not fuzzy pre- γ -compact relative to X, then \exists a pre- γ -open fuzzy set \mathcal{A} covering of λ such that no finite subcover \mathcal{B} . Then $(\bigvee_{B_i \in \mathcal{B}} B_i)(x) < \lambda(x)$, for some $x \in S(\lambda)$, so that $(\bigwedge_{B_i \in \mathcal{B}} B_i(x) > \overline{\lambda}(x) \geq \underline{0}$ and thus $\mathcal{P} = \{\overline{B_i}(x) : B_i \in \mathcal{A}\}$ forms a filterbases and $(\bigwedge_{B_i \in \mathcal{B}} \overline{B_i}) \ q \ \lambda$. Since, $(\bigwedge_{B_i \in \mathcal{B}} pcl_{\gamma}(B_i)) \ \Lambda \neq \underline{0}$, we obtain $(\bigwedge_{B_i \in \mathcal{B}} \overline{B_i}) \ \Lambda \lambda \neq \underline{0}$. Then for some $x \in S(\lambda)$, $(\bigwedge_{B_i \in \mathcal{A}} \overline{B_i})(x) > \underline{0}$, which gives $(\bigvee_{B_i \in \mathcal{A}} B_i)(x) < \underline{1}$. This is a contradiction. Thus λ is a fuzzy pre- γ -compact relative to X.

Conversely, assume that \exists a filterbases \mathcal{P} such that each finite members of \mathcal{P} is quasi coincident with λ and $(\bigwedge_{H \in \mathcal{P}} pcl_{\gamma}(H)) \bigwedge \lambda \neq \underline{0}$. Then $\forall x \in S(\lambda)$,

Fuzzy Pre- γ -Compact, Fuzzy Pre- γ -Connected and Fuzzy Pre- γ -Closed Spaces 145

 $(\bigwedge_{G \in \Gamma} pcl_{\gamma}(G))(x) \neq \underline{0} \text{ and thus } (\bigvee_{H \in \mathcal{P}} \overline{pcl_{\gamma}(H)})(x) = \underline{1}, \ \forall \ x \in S(\lambda). \text{ Hence } \mathcal{A} = \{\overline{pcl_{\gamma}(H)} : H \in \mathcal{P}\} \text{ is a pre-}\gamma\text{-open fuzzy set cover of } \lambda. \text{ Since } \lambda \text{ is fuzzy pre-}\gamma\text{-compact relative to } X, \ \exists \text{ a finite subcover, say } \{\overline{pcl_{\gamma}(H_i)} : i = 1, 2, \dots, n\} \text{ such that } (\bigvee_{i=1}^n pcl_{\gamma}(H_i)(x) \geq \lambda(x) \ \forall \ x \in S(\lambda). \text{ Thus } (\bigwedge_{i=1}^n pcl_{\gamma}(H_i))(x) \leq \overline{\lambda}(x) \ \forall \ x \in S(\lambda), \text{ so that } (\bigwedge_{i=1}^n pcl_{\gamma}(H_i)) \ \overline{q} \ \lambda \text{ which is a contradiction. Thus } \forall \text{ filterbases } \mathcal{P}, \text{ each finite member of } \mathcal{P} \text{ is quasi-coincident with } \lambda. \text{ Hence } (\bigwedge_{H \in \mathcal{P}} pcl_{\gamma}(H)) \ \bigwedge \lambda \neq \underline{0}.$

Theorem 3.4. Each pre- γ -closed fuzzy subset of fuzzy pre- γ -compact space is fuzzy pre- γ -compact relative to X.

Proof. Assume that \mathcal{P} be a fuzzy filterbases in (X, τ_X) such that $\mu \ q \ (\bigwedge \{\lambda : \lambda \in \mathcal{Q}\})$ holds \forall finite sub collection \mathcal{Q} of \mathcal{P} and pre- γ -closed fuzzy subset μ . Let $\lambda^* = \{\mu\} \cup \lambda$. For any finite sub collection \mathcal{Q}^* of \mathcal{P}^* , if $\mu \notin \mathcal{Q}^*$, then $\bigwedge \mathcal{Q}^* \neq \underline{0}$. If $\mu \in \mathcal{Q}^*$ and since $\mu \ q \ (\bigwedge \{\lambda : \lambda \in \mathcal{Q}^* - \mu\})$, we obtain $\bigwedge \mathcal{Q}^* \neq \underline{0}$. Thus \mathcal{Q}^* is a fuzzy filterbases in X. Since X is fuzzy pre- γ -compact, we obtain $(\bigwedge_{\lambda \in \mathcal{P}^*} pcl_{\gamma}(\lambda)) \neq \underline{0}$, such that $(\bigwedge_{\lambda \in \mathcal{P}} pcl_{\gamma}(\lambda)) \bigwedge \mu = pcl_{\gamma}(\lambda) \bigwedge pcl_{\gamma}(\mu) \neq \underline{0}$. Hence by Theorem 3.3, μ is fuzzy pre- γ -compact relative to X.

Theorem 3.5. The image of a fuzzy pre- γ -compact space under a fuzzy pre*- γ -continuous mapping is fuzzy pre- γ -compact. **Proof.** Obvious.

Theorem 3.6. If a mapping $f:(X, \tau_X) \to (Y, \tau_Y)$ is fuzzy $pre^*-\gamma$ -continuous and η is fuzzy $pre-\gamma$ -compact relative to X, then $f(\eta)$ is fuzzy $pre-\gamma$ -compact. Proof. Let $\{B_{\mu}: \mu \in \mathcal{P}\}$ be a pre- γ -open fuzzy set cover of $S(f(\eta))$ in Y. For x in $S(\eta)$, $f(x) \in f(S(\eta))$. Since f is fuzzy $pre^*-\gamma$ -continuous, $\{f^{-1}(B_{\mu}): \mu \in \mathcal{P}\}$ is $pre-\gamma$ -open fuzzy set cover of $S(\eta)$ in X. Since η is fuzzy $pre-\gamma$ -compact relative to X, there is a finite subcollection $\{f^{-1}(B_{\mu}): \mu = 1, 2, ..., n\}$ such that $S(\eta) \leq \sum_{\mu=1}^{n} f^{-1}(B_{\mu}) = f^{-1}(B_{\mu})$. Thus $S(f(\eta)) = f(S(\eta)) \leq f(f^{-1}(B_{\mu})) \leq \sum_{\mu=1}^{n} f(B_{\mu})$. Hence $f(\eta)$ is fuzzy $pre-\gamma$ -compact relative to Y.

Definition 3.4. Let (X, τ_X) be a fts and γ be a fuzzy operation on τ_X . Then X is called fuzzy locally pre- γ -compact iff for each fuzzy point x_{α} in $X, \exists \mu$ such that

- (i) $x_{\alpha} \in \mu$;
- (ii) μ is fuzzy pre- γ -compact.

Remark 3.1. Every fuzzy pre- γ -compact is fuzzy locally pre- γ -compact.

The converse of the above Remark 3.1 need not be true as shown in the following example.

Example 3.2. Let X = I = [0,1] and consider the following fuzzy sets $A_1(x) = 1.30/\sqrt{2}$, $A_2(x) = 1.31/\sqrt{2}$, $A_3(x) = 1.32/\sqrt{2}$,, $\forall x \in I$. Let $\tau = \{A_i : i \in N^+\} \cup \{\underline{0},\underline{1}\}$ It is clear that τ is fuzzy topology on X. Define an operation γ on τ by $\gamma(\lambda) = \lambda$. Now the space X is fuzzy locally pre- γ -compact, since the whole space X satisfies the necessary condition. But the space X is not fuzzy pre- γ -compact, since X has no finite fuzzy pre- γ -open subcover.

Theorem 3.7. Let (X, τ_X) be a locally pre- γ -compact fts and (Y, τ_Y) be a fts. If a fuzzy continuous mapping $f: (X, \tau_X) \to (Y, \tau_Y)$ is fuzzy pre*- γ -open, then Y is fuzzy locally pre- γ -compact.

Proof. Suppose x_{α} be a fuzzy point in Y with support x_1 and the value x. Then x_{β} is a fuzzy point in X with support y_1 and the value x. Now $y_1 \in f^{-1}(x_1)$. Therefore $f(x_{\beta}) = x_{\alpha}$. Since x_{β} is a fuzzy point in X and X is fuzzy locally pre- γ -compact, by definition there exists an element $\lambda \in \tau_X$ such that $x_{\beta} \in \lambda$ and λ is fuzzy pre- γ -compact. Now $\lambda \in \tau_X$ and f is fuzzy pre*- γ -open map, thus $f(\lambda) \in \tau_Y$ and $f(\lambda)$ is fuzzy pre- $f(\lambda)$ and $f(\lambda)$ is fuzzy pre- $f(\lambda)$ such that $f(\lambda)$ is fuzzy pre- $f(\lambda)$ and $f(\lambda)$ is fuzzy pre- $f(\lambda)$ is fuzzy pre- $f(\lambda)$ and $f(\lambda)$ is fuzzy pre- $f(\lambda)$ and $f(\lambda)$ is fuzzy pre- $f(\lambda)$ is fuzzy pre- $f(\lambda)$ and $f(\lambda)$ is fuzzy pre- $f(\lambda)$ and $f(\lambda)$ is fuzzy pre- $f(\lambda)$ and $f(\lambda)$ is fuzzy pre- $f(\lambda)$ is fuzzy pre- $f(\lambda)$ and $f(\lambda)$ is fuzzy pre- $f(\lambda)$ is fuzzy pre-f(

4. Fuzzy Pre- γ -Closed Spaces

In this section, we introduce notions of fuzzy pre- γ -closed, fuzzy pre- γ -closed relative to X. We also prove some theorems.

Definition 4.1. Let (X, τ_X) be a fts and γ be an fuzzy operation on τ_X . Then X is called fuzzy pre- γ -closed iff \forall collection \mathcal{A} of pre- γ -open fuzzy sets such that $\bigvee_{\lambda \in \mathcal{A}} \lambda = \underline{1}$, there is a finite subcollection \mathcal{B} of \mathcal{A} such that $(\bigvee_{\lambda \in \mathcal{B}} \operatorname{pcl}_{\gamma}(\lambda))(x) = \underline{1}$, $\forall x \in X$.

Definition 4.2. Let (X, τ_X) be a fts and γ be an fuzzy operation on τ_X . A fuzzy set λ in X is called fuzzy pre- γ -closed relative to X iff \forall collection \mathcal{A} of pre- γ -open fuzzy sets such that $\bigvee_{\mu \in \mathcal{A}} \mu = \lambda$, there is a finite subcollection \mathcal{B} of \mathcal{A} such that $\bigvee_{\mu \in \mathcal{B}} pcl_{\gamma}(\mu)(x) = \lambda(x), \ \forall \ x \in S(\lambda).$

Remark 4.1. Every fuzzy pre- γ -compact space is fuzzy pre- γ -closed, but the converse may not be true as shown in the below example.

Example 4.1. Let $X \neq \underline{0}$ be a set and $A_m(x) = 1 - \frac{1}{m}$, $\forall x \in X$ and m be a

positive natural number. The collection $\{A_m : m \text{ is a positive natural number}\}$ is a base for a fuzzy topology on X. Define a fuzzy operation γ on the fuzzy topology as $\gamma(\lambda) = \lambda$, \forall open fuzzy sets. The collection $\{A_m : m \text{ is a positive natural number}\}$ is a pre- γ -open fuzzy set cover of X. On the other hand, we obtain $pcl_{\gamma}(\lambda) = \underline{1}$. Thus the fts X is fuzzy pre- γ -closed but not fuzzy pre- γ -compact. (see [2])

Theorem 4.1. A fts X is fuzzy pre- γ -closed iff for every fuzzy pre- γ -open filter-bases \mathcal{P} in X, $(\bigwedge_{H \in \mathcal{P}} pcl_{\gamma}(H)) \neq \underline{0}$.

Proof. Let \mathcal{A} be a pre- γ -open fuzzy set cover of X and let for each finite collection \mathcal{B} of \mathcal{A} , $(\bigvee_{B \in \mathcal{B}} pcl_{\gamma}(B))(x) < \underline{1}$, for some $x \in X$. Therefore $(\bigwedge_{H \in \mathcal{B}} \overline{pcl_{\gamma}(H)})(x) > \underline{0}$, for

some $x \in X$. Hence $\{pcl_{\gamma}(B) : B \in \mathcal{A}\} = \mathcal{P}$ forms a fuzzy pre- γ -open filter bases in X. Since \mathcal{A} is a pre- γ -open fuzzy set cover of X, we obtain $(\bigwedge_{B \in \mathcal{A}} \overline{B}) = \underline{0}$, which

implies $(\bigwedge_{B\in\mathcal{A}}pcl_{\gamma}(\overline{pcl_{\gamma}(H)})(x)=\underline{0}$, which is a contradiction. Then each pre- γ -open

fuzzy set cover \mathcal{A} of X has a finite subcollection \mathcal{B} such that $(\bigvee_{B \in \mathcal{B}} pcl_{\gamma}(B)(x) = \underline{1},$

 $\forall x \in X$. Thus X is fuzzy pre- γ -closed.

Conversely, assume that \exists a fuzzy pre- γ -open filter bases \mathcal{P} in X such that $\bigwedge_{H \in \mathcal{P}} pcl_{\gamma}(H) = \underline{0}$. Therefore $(\bigvee_{H \in \mathcal{P}} \overline{pcl_{\gamma}(H)})(x) = \underline{1}, \ \forall \ x \in X$ and thus $\mathcal{A} = \{(\overline{pcl_{\gamma}(H)}) : H \in \mathcal{A})\}$ is a pre- γ -open fuzzy set cover of X. Since the fts X is fuzzy pre- γ -closed, \mathcal{A} has a finite subcollection \mathcal{B} such that $(\bigvee_{H \in \mathcal{B}} pcl_{\gamma}(\overline{pcl_{\gamma}(B)})(x) = \underline{1},$

 $\forall x \in X$, and thus $\bigwedge_{H \in \mathcal{B}} \overline{(pcl_{\gamma}(\overline{pcl_{\gamma}(H)}))} = \underline{0}$, Hence $\bigwedge_{H \in \mathcal{B}} H = \underline{0}$, which is a contradiction. Thus $\bigwedge_{H \in \mathcal{P}} pcl_{\gamma}(H) \neq \underline{0}$.

Theorem 4.2. A fuzzy subset μ in a fts X is fuzzy pre- γ -closed relative to X iff \forall fuzzy pre- γ -open filter bases \mathcal{P} in X, $(\bigwedge_{\lambda \in \mathcal{P}} pcl_{\gamma}(\lambda)) \wedge \mu \neq \underline{0}$, \exists a finite subcollection \mathcal{Q} of \mathcal{P} such that $(\bigwedge_{\lambda \in \mathcal{O}} \lambda) \overline{q} \mu$.

Proof. Let μ be a fuzzy pre- γ -closed set relative to X. Suppose \mathcal{P} be a fuzzy pre- γ -open filterbases in X such that for each finite subcollection \mathcal{Q} of \mathcal{P} , then $(\bigwedge_{\lambda \in \mathcal{Q}} \lambda) \ q \ \mu$, but $(\bigwedge_{\lambda \in \mathcal{P}} pcl_{\gamma}(\lambda)) \bigwedge \mu = \underline{0}$. Then $\forall \ x \in S(\mu), \ (\bigwedge_{\lambda \in \mathcal{P}} pcl_{\gamma}(\lambda))(x) = \underline{0}$. Therefore $(\bigvee_{\lambda \in \mathcal{P}} \overline{pcl_{\gamma}(\lambda)})(x) = \underline{1}, \ \forall \ x \in S(\mu)$. So $\mu = \{\overline{pcl_{\gamma}(\lambda)} : \lambda \in \mathcal{P}\}$ is a pre- γ -open fuzzy set cover of \mathcal{P} and thus \exists a finite sub collection \mathcal{Q} of \mathcal{P} , such that $(\bigvee_{\lambda \in \mathcal{Q}} pcl_{\gamma}(\overline{pcl_{\gamma}(\lambda)}) \geq \mu$, so that $\bigwedge_{\lambda \in \mathcal{Q}} (\overline{pcl_{\gamma}(\overline{pcl_{\gamma}(\lambda)})}) = \bigwedge_{\lambda \in \mathcal{Q}} (pint_{\gamma}(pcl_{\gamma}(\lambda)) \leq \overline{\mu}$. Thus

 $\bigwedge_{\lambda \in \mathcal{Q}} \lambda \leq \overline{\mu}. \text{ Thus } \bigwedge_{\lambda \in \mathcal{Q}} \lambda \ \overline{q} \ \mu. \text{ This is a contradiction}.$

Conversely, assume that μ is not fuzzy pre- γ -closed relative to X, then \exists a pre- γ -open fuzzy set \mathcal{A} that covers μ such that for each finite subcollection \mathcal{B} of \mathcal{A} , we obtain $(\bigvee_{B\in\mathcal{B}}pcl_{\gamma}(B))(x) \leq \mu(x)$, for some $x\in S(\mu)$ and thus $(\bigwedge_{B\in\mathcal{B}}(\overline{pcl_{\gamma}(B)})(x) \geq$ $(\overline{\mu(x)}) > \underline{0}$ for some $x \in S(\mu)$. Thus $\mathcal{P} = \{\overline{pcl_{\gamma}(B)} : B \in \mathcal{A})\}$ forms a fuzzy pre- γ -open filterbases in X. Let $\{\overline{pcl_{\gamma}(B)}: B \in \mathcal{B}\}$ be a finite subcollection such that $(\bigwedge_{B \in \mathcal{B}} \overline{pcl_{\gamma}(\lambda)}) \overline{q} \mu$. Therefore $\mu \leq \bigvee_{B \in \mathcal{B}} pcl_{\gamma}(B)$. So \exists a finite subcollection \mathcal{B} of \mathcal{A} such that $\mu \leq \bigvee_{B \in \mathcal{B}} pcl_{\gamma}(B)$, which is a contradiction. Then \forall finite sub collection $\mathcal{Q} = \{(\overline{pcl_{\gamma}(B)} : B \in \mathcal{B}\} \text{ of } \mathcal{P}, \text{ we obtain } (\bigwedge_{B \in \mathcal{B}} \overline{pcl_{\gamma}(\lambda)}) \ q \ \mu. \text{ There-}$ fore by hypothesis $(\bigwedge_{B\in\mathcal{A}}pcl_{\gamma}(\overline{pcl_{\gamma}(\lambda)})) \bigwedge \mu \neq \underline{0}$. Therefore $\exists x \in S(\mu)$ such that $(\bigwedge_{B\in\mathcal{A}}pcl_{\gamma}(\overline{pcl_{\gamma}(\lambda)}))(x)>\underline{0}. \text{ Thus } (\bigvee_{B\in\mathcal{A}}(\overline{pcl_{\gamma}(\overline{pcl_{\gamma}(\lambda)})})(x)=(\bigvee_{B\in\mathcal{A}}(pint_{\gamma}(pcl_{\gamma}(\lambda))))(x)<\underline{1} \text{ and thus } (\bigvee_{B\in\mathcal{A}}B)\ (x)<\underline{1}, \text{ which is a contradiction to fact that } \mathcal{A} \text{ is a}$ pre- γ -open fuzzy set cover of μ . Hence μ is a fuzzy pre- γ -closed relative to X. X is fuzzy pre- γ -closed space, then Y is also a fuzzy pre- γ -closed.

Theorem 4.3. Let $f:(X, \tau_X) \to (Y, \tau_Y)$ is an onto fuzzy $pre^*-\gamma$ -continuous. If

Proof. Let $\{B_{\mu} : \mu \in \mathcal{P}\}$ be a pre- γ -open fuzzy set cover of Y. Since f is fuzzy pre*- γ -continuous, $\{f^{-1}(B_{\mu}): \mu \in \mathcal{P}\}\$ is pre- γ -open fuzzy set cover of X. By definition

of covering, \exists a finite subcollection \mathcal{Q} of \mathcal{P} such that $(\bigvee_{\mu \in \mathcal{Q}} pcl_{\gamma}(f^{-1}(B_{\mu})) = \underline{1}$. Since f is an onto, $\underline{1} = f(\underline{1}) = f(\bigvee_{\mu \in \mathcal{Q}} pcl_{\gamma}(f^{-1}(B_{\mu}))) \leq pcl_{\gamma}(f(f^{-1}(B_{\mu}))) = pcl_{\gamma}(B_{\mu})$. Thus Y is fuzzy pre- γ -closed.

5. Fuzzy Pre- γ -Connected Spaces

Definition 5.1. Let (X, τ_X) be a fits and γ be a fuzzy operation on τ_X . Then (X, τ_X) is called fuzzy pre- γ -connected if it has no proper pre- γ -clopen (pre- γ -open and pre- γ -closed) fuzzy subset. [A fuzzy subset μ in X is proper if $\mu \neq 0$ and $\mu \neq \underline{1}$.

Theorem 5.1. A fts (X, τ_X) is fuzzy pre- γ -connected iff it has no non zero pre- γ -open fuzzy subsets λ and μ such that $\lambda + \mu = 1$.

Proof. If such λ and μ exist, then λ is a proper fuzzy set which are both pre- γ open and pre- γ -closed fuzzy set in X. Conversely, if possible assume that X is not fuzzy pre- γ -connected. Then it has a proper fuzzy set λ which are both pre- γ -open and pre- γ -closed fuzzy set. Let us take $\mu = \lambda^c$. Hence μ is a pre- γ -open fuzzy set such that $\mu \neq 0$ and $\lambda + \mu = 1$.

Corollary 5.1. A fts (X, τ_X) is fuzzy pre- γ -connected iff it has no non zero pre- γ -open fuzzy subsets λ and μ such that $\lambda + \mu = \underline{1}$ and $\lambda + \overline{\mu} = \overline{\lambda} + \mu = \underline{1}$. **Proof.** Evident.

Remark 5.1. The fuzzy product of fuzzy pre- γ -connected spaces may not be a fuzzy pre- γ -connected as shown in the following example.

Example Let $X_i = [0,1], i \in I$. For some $j,k \in I$, let $\tau_{X_j} = \{0,1,\lambda\}$ and $\tau_{X_k} = \{0,1,\lambda^c\}$, where $\lambda(x) = 1/3$, for $0 \le x \le 1$ and $\tau_{X_i} = \{0,1\}$ for each $i \in I$ and $i \ne j$, $i \ne k$. Define an operation γ on τ_{X_j} and τ_{X_k} by $\gamma(\lambda) = \lambda$ and $\gamma(\lambda^c) = \lambda^c$ respectively. Then each X_i is fuzzy pre- γ -connected but $\prod_{i \in I} X_i$ is not so as $\tau(\prod_{i \in I} X_i)$ contains non zero pre- γ -open fuzzy sets $A_j^{-1}(\lambda)$ and $A_k^{-1}(\lambda^c)$ such that for every $x \in \prod_{i \in I} X_i$, $A_j^{-1}(\lambda) + A_k^{-1}(\lambda^c) = 1$. [3]

Definition 5.2. Let (X, τ_X) be a fts and γ be a fuzzy operation on τ_X . A fuzzy subset Y in X is called fuzzy pre- γ -connected if (Y, τ_Y) is a fuzzy pre- γ -connected.

Theorem 5.2. Let (X, τ_X) be a fts and γ be a fuzzy operation on τ_X . Y is a fuzzy pre- γ -connected subset of X and λ , μ are non empty pre- γ -open fuzzy subsets of X such that $\lambda + \mu = \underline{1}_X$, then either $\lambda \wedge Y = \underline{1}_Y$ or $\mu \wedge Y = \underline{1}_Y$.

Proof. Assume that there exists $x_1, x_2 \in Y$ such that $\lambda(x_1) \neq \underline{1}$ and $\mu(X_2) \neq \underline{1}$. Then $\lambda + \mu = \underline{1}$ implies that $\lambda \wedge Y + \mu \wedge Y = \underline{1}$, where $\lambda \wedge Y \neq \underline{0}$ and $\mu \wedge Y \neq \underline{0}$. Therefore by Theorem 5.1, Y is not a fuzzy pre- γ -connected.

Definition 5.3. Let (X, τ_X) be a fts and γ be a fuzzy operation on τ_X . Two pre- γ -open fuzzy sets λ and μ in X are called fuzzy pre- γ -separated if $\overline{\lambda} + \mu \leq \underline{1}$ and $\lambda + \overline{\mu} \leq \underline{1}$.

Theorem 5.3. The image of a fuzzy pre- γ -connected space under a fuzzy pre*- γ -continuous mapping is fuzzy pre- γ -connected.

Proof. Let (X, τ_X) be a fuzzy pre- γ -connected fts and $f:(X, \tau_X) \to (Y, \tau_Y)$ be a continuous onto mapping. If possible suppose that (Y, τ_Y) is not fuzzy pre- γ -connected. Then \exists two non empty pre- γ -open fuzzy sets λ and μ of Y such that $\lambda + \mu = \underline{1}$. Therefore, $f^{-1}(\lambda)$ and $f^{-1}(\mu)$ are two non empty pre- γ -open fuzzy subsets of X such that $f^{-1}(\lambda) + f^{-1}(\mu) = \underline{1}$, which implies X is not fuzzy pre- γ -connected. This is a contradiction.

Definition 5.4. Let (X, τ_X) be a fts and γ be a fuzzy operation on τ_X . Then X is called fuzzy strongly pre- γ -connected if it has no non zero pre- γ -closed fuzzy sets μ_1 and μ_2 such that $\mu_1 + \mu_2 \leq \underline{1}$. If X is not fuzzy strongly pre- γ -connected then it

is said to be fuzzy weakly pre- γ -connected.

Theorem 5.4. A fts X is fuzzy strongly pre- γ -connected iff it has no non zero pre- γ -open fuzzy sets λ_1 and λ_2 such that $\lambda_1 \neq \underline{1}$, $\lambda_2 \neq \underline{1}$ and $\lambda_1 + \lambda_2 \geq \underline{1}$.

Proof. Suppose that X is not a fuzzy strongly pre- γ -connected. So X is fuzzy weakly pre- γ -connected.

- \Leftrightarrow if it has non zero pre- γ -closed fuzzy sets μ_1 and μ_2 such that $\mu_1 + \mu_2 \leq \underline{1}$.
- \Leftrightarrow if it has non zero pre- γ -open fuzzy sets $\lambda = \mu_1^c$ and $\lambda_2 = \mu_2^c$ such that $\lambda_1 \neq 1$, $\lambda_2 \neq 1$ and $\lambda_1 + \lambda_2 > 1$.

Remark 5.2. Every fuzzy strongly pre- γ -connectedness is fuzzy pre- γ -connectedness but the converse need not be true as shown in the following example.

Example 5.3. Let X = [0, 1] and for $0 \le x \le 1$, $\mu(x) = 0.6$ and $\tau_X = \{\underline{1}, \underline{0}, \mu\}$. Clearly (X, τ_X) is a fts. Define $\gamma : \tau_X \to I^X$ by $\gamma(\underline{1}) = \underline{1}$, $\gamma(\underline{0}) = \underline{0}$, $\gamma(\mu) = \mu$. Then the fts X is a fuzzy pre- γ -connected but not strongly pre- γ -connected.

References

- Chang, C. L., Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-189.
- [2] Coker, D., and Haydar Es, A., On fuzzy S-closed spaces, Doga Tu J. Math., (1987), 145-152.
- [3] Fatteh, U. V. and Bassan, D. S., Fuzzy Connectedness and Its Stronger Forms, Journals of Mathematical Analysis and Applications, 111 (1985), 449-464.
- [4] Ganguly, S. and Saha, S., A Note on compactness in fuzzy setting, Fuzzy Sets and Systems, 34 (1990), 117-124.
- [5] Hariwan Z. Ibrahim., Weak forms of γ -open sets and new separation axioms, Int. J. Sci. Eng. Res., 3(4) (2012), 1-4.
- [6] Kalita, B., and Das, N. R., Some Aspects of Fuzzy operations, The Journal of Fuzzy Mathematics, 19(3) (2011), 531-540.
- [7] Kasahara, S., Operation-Compact spaces, Math. Japonica, 24 (1979), 97-105.
- [8] Sivashanmugaraja, C., Fuzzy Pre*-γ-Open and Fuzzy Pre*-γ-Continuous Mappings in Fuzzy Topological Spaces, International journal of Mathematics Trends and Technology, 67(4) (2021), 101-109.

- [9] Sivashanmugaraja, C., More on Fuzzy pre- γ -open and Fuzzy Pre- γ -closed Sets, South East Asian Journal of Mathematics and Mathematical Sciences, Special Issue, Accepted.
- [10] Sivashanmugaraja, C., Operation approaches on fuzzy pre- γ -continuity and fuzzy weakly pre- γ -continuity in fuzzy topological spaces, Applied Science and Computer Mathematics, Accepted.
- [11] Sivashanmugaraja, C., and Vadivel, A., Weak forms of fuzzy γ -open sets, Global Journal of Pure and Applied Mathematics, 13 (2017), 251-261.
- [12] Zadeh, L. A., Fuzzy sets, Information and Control, 8 (1965), 338-353.