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Abstract: Compactness and connectedness play a crucial role in Topology. In
this paper, we introduce concepts of fuzzy pre-y-compact, fuzzy pre-v-connected
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1. Introduction

The notion of fuzzy sets was introduced by Zadeh in his paper [12]. By using
the concept of fuzzy sets, Chang [1] introduced the idea of fuzzy topological space.
The notion of fuzzy sets has been used by many researchers to several branches of
Mathematics. Kasahara [7] defined the notion of an operation v on a topological
space. Kalitha and Das [6] introduced and investigated the operation v on fuzzy
topological spaces. The notion of pre-v-open sets in general topological spaces was
defined by Ibrahim [5]. Recently Sivashanmugaraja and Vadivel [11] introduced
the notion of pre-v-open fuzzy sets in fuzzy topological spaces. The aim of this
paper is devoted to introduce and investigate the notion of pre-y-compact, pre-v-
connected and pre-vy-closed spaces in fuzzy setting. Also we establish some basic
theorems about it.
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2. Preliminaries

Throughout this paper (X, 7x) or simply X always mean a fuzzy topological
space (fts, for short). The interior, the closure and complement of a fuzzy set
A € I will be denoted by int(A), cl(A) and A€ respectively. By 0 and 1 we mean
the constant fuzzy sets taking on the values 0 and 1 respectively. Now we recall
some of the basic definitions.

Definition 2.1. [6] Let (X, 7x) be a fuzzy topological space. A fuzzy operation -y
on the topology Tx is a mapping from T into set IX such that X C y(\), V X € 7x
where y(X) denotes the value of v at V. The mapping defined as y(A) = X, y(A\) =
c(N), v(A) = int(cl(N))., etc are examples of fuzzy operations.

Definition 2.2. [6] A fuzzy subset A of (X,7x) is called a fuzzy ~y-open, if ¥V
p g\, Jap €T and p,? q p such that v(p) < \. 7, denotes the set of all y-open
fuzzy sets. Clearly we have 7, C 7x.

Definition 2.3. A fuzzy set X of a fts X is called fuzzy pre-y-open [11] if X < 7,-
int(cl(N)). A fuzzy set X of a fts X is called fuzzy pre-y-closed |9] iff its complement
1S fuzzy pre-y-open. The family of all pre-y-open and pre-y-closed fuzzy sets are
denoted by F'P,O(X) and FP,C(X) respectively.

Definition 2.4. [9] Let A be a fuzzy subset of (X, 7). Then:

(i) The union of all fuzzy pre-y-open sets contained in X is called the fuzzy pre-
y-interior of A\, denoted by pint,(\).
i.e., pint,(A) =V{u < A:pe FP,0(X)}.

(ii) The intersection of all fuzzy pre-y-closed sets containing X is called the fuzzy
pre-y-closure of A, denoted by pcl, ().
i.e., pcly(A) = ANp >N pe FP,C(X)}.

Definition 2.5. [4] A collection of fuzzy subsets P of a fts (X, T) is called to form
a fuzzy filterbases iff for every finite collection {Q; :i=1,2,,...,n}, N\ Q; #0.

i=1
Definition 2.6. [1] A mapping f : (X, 7x) — (Y, 7v) is called fuzzy continuous,
if £ (u) is an open fuzzy set of X,V open fuzzy set p of Y.

Definition 2.7. [10] A mapping f : (X, 7) — (Y, o) is said to be fuzzy pre-y-
irresolute (or pre*-y-continuous), if f~1(\) is pre-y-open fuzzy set of X, V pre-y-
open fuzzy set A of Y.

Definition 2.8. [8] A mapping [ : (X, 7x) = (Y, 7v) is called fuzzy pre*-y-open,
if the image of each pre-y-open fuzzy set of (X, Tx) is pre-y-open fuzzy set in
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(Y, Ty).

3. Fuzzy Pre-y-Compact Spaces

In this section, we introduce notions of fuzzy pre-v-compact, fuzzy pre-vy-
compact relative to X, fuzzy locally pre-y-compact and discuss some fundamental
theorems about it.

Definition 3.1. Let (X, 7x) be a fts and v be a fuzzy operation on T7x. A collection
A of pre-y-open fuzzy subsets of a fts X is said to pre-y-open cover X or to be a
pre-y-open covering of X, if \| B =1.

BeA
Definition 3.2. Let (X, 7x) be a fts and v be a fuzzy operation on Tx. Then X
is called fuzzy pre-y-compact if each pre-y-open covering A of X contains a finite
sub collection that also covers X.

Example 3.1. Any fuzzy topological space (X, 7x) containing only finitely many
pre-v-open fuzzy sets is necessarily fuzzy pre-vy-compact, since in this case each
pre-v-open fuzzy sets covering of X is finite.

Definition 3.3. Let (X, 7x) be a fts and v be a fuzzy operation on Tx. A fuzzy set
A in X is called fuzzy pre-y-compact relative to X iff V collection A of pre-y-open

fuzzy sets such that (\/ @) > Nx), there is a finite subcollection B of A such that
pneA

(V p) = M), Vo e S).

neB

Theorem 3.1. A fts X is fuzzy pre-y-compact iff each collection {C; : i € J} of
pre-y-closed fuzzy sets of X having the finite intersection property, ( \ C;) # 0.
ieJ
Proof. Let X be a fuzzy pre-y-compact and the collection {C; : i € J} of pre-y-
closed fuzzy sets having the finite intersection property. Assume that ( A C;) = 0.
ieJ
Then (\/ C;) = 1. By hypothesis {C; : i € J} is a collection of pre-y-open fuzzy
ieJ
sets covering X, then by definition of pre-y-compactness of X, it follows that then
3 a finite subset I of J such that (\/ C;) = 1. Therefore (A C;) = 0, which is a
iel iel
contradiction to our assumption. Hence (A C;) # 0.
ieJ
Conversely, let the collection {C; : i € J} of pre-y-open fuzzy sets covering X.
Assume that for each finite fuzzy subset I of J , we have (\/ C;) # 1. Therefore
el
(A(C:) # 0. Thus {C; : i € J} satisfies the finite intersection property. Therefore
iel
by hypothesis, we obtain ( A C;) # 0. which implies (\/ C;) # 1. This is a contra-

i€ 1€l
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diction to our assumption {C; : i € J} is a pre-y-open fuzzy set cover of X. Hence
X is fuzzy pre-y-compact.

Theorem 3.2. A fts X is fuzzy pre-y-compact iff each fuzzy filterbases P in X,
(A pely(H)) # 0.
HeP

Proof. Let A be a fuzzy pre-y-open cover which has no finite sub-cover in
X. Then V finite sub collection of {By,Bs,...,B,} of A, 3 x € X such that

Bi(z) < 1,V i = 1,2,...,n. Therefore B;(x) > 0, so that (A A;(z)) # 0. Hence
i=1

{Bi(x) : B; € A} forms a filterbases in X. Since A is pre-y-open fuzzy set cover
of X, (V pcly(B))(x) =(V Bi)(x) =1V zeX and thus A pcly(B;)(z) =
B,eA B;eA B;eA

A\ Bi(z) = 0, which is a contradiction. Then each pre-y-open fuzzy set cover of
B;eA
X has a finite subcover and thus X is fuzzy pre-y-compact.

Conversely, assume that 3 a filterbases P in X, such that A pcl,(H) = 0, so
HeP

that (\V/ pcly(H))(z) =1, Vo € X and thus A = {pcl,(H) : H € A} is a fuzzy
HEP
pre-v-open fuzzy set cover of X Since X is fuzzy pre-v- compact we obtain P has

a finite subcover. Therefore (\/ pcly(H;)) (x) = 1 and thus (\/ (H))(z) =1, so

i=1 i=1
that /\ (H;) = 0, which is a contradiction. Thus A pcl,(H) # 0, V filterbases P.
=1 HEP
Theorem 3.3. A fuzzy set A in a fts X is fuzzy pre-y-compact relative to X iff
each filterbase P such that each finite members of P s quasi coincident with C),

(H/E\PPCZW(H)) NC # 0.

Proof. If possible assume that A is not fuzzy pre-y-compact relative to X, then

3 a pre-y-open fuzzy set A covering of A such that no finite subcover B. Then

(V Bi)(z) < Ax), for some x € S()N), so that ( A Bi(z) > A(z) > 0 and thus

BieB B;eB

P = {Bi(z) : B; € A} forms a filterbases and ( A\ B;) ¢ A. Since, ( A pcl,(B:)) A
B;eB

B;eB
A # 0, we obtain ( /\ B;) AX # 0. Then for some x € S()\), ( A Bi)(x) > 0,
eB B;cA
which gives (\/ B; )(:L‘) < 1. This is a contradiction. Thus A is a fuzzy pre-v-
B;eA

compact relative to X.

Conversely, assume that 3 a filterbases P such that each finite members of
P is quasi coincident with A and ( A pcly(H)) AX # 0. Then V z € S()),
HeP
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(G/G\chlw(G))(x) # 0 and thus (H\E/Ppcly(H))(x) =1 Va e S(\). Hence A =

{pcl,(H) : H € P} is a pre-y-open fuzzy set cover of A. Since A\ is fuzzy pre-v-
compact relative to X, 3 a finite subcover, say {pcl,(H;) : i = 1,2,...,n} such that

(A\zde(Hi)(x) > MNz) V z € S(A). Thus (‘/z\lpCZW(Hi))(x) < XMz) ¥V z € S(N), so

that (A pcly(H;)) ¢ A which is a contradiction. Thus V filterbases P, each finite
i=1

member of P is quasi-coincident with \. Hence ( A\ pel,(H)) ANX#O.
HeP

Theorem 3.4. Fach pre-y-closed fuzzy subset of fuzzy pre-y-compact space is fuzzy
pre-y-compact relative to X.

Proof. Assume that P be a fuzzy filterbases in (X, 7x) such that p g (A{\ :
A € Q}) holds V finite sub collection Q of P and pre-vy-closed fuzzy subset u. Let
A* = {p} U . For any finite sub collection Q* of P*, if u ¢ Q*, then A\ Q* # 0. If
€ QF and since g (A{A: A € Q" —pu}), we obtain A Q* # 0. Thus Q* is a fuzzy

filterbases in X. Since X is fuzzy pre-y-compact, we obtain ( A pcl,()\)) # 0, such
AEP*

that ( A pcl,(N) A n = pely(N) A pel, (1) # 0. Hence by Theorem 3.3, p is fuzzy
AEP

pre-y-compact relative to X.

Theorem 3.5. The image of a fuzzy pre-y-compact space under a fuzzy pre*-y-
continuous mapping is fuzzy pre-y-compact.

Proof. Obvious.

Theorem 3.6. If a mapping [ : (X, 7x) — (Y, 7v) is fuzzy pre*-y-continuous
and n is fuzzy pre-y-compact relative to X, then f(n) is fuzzy pre-y-compact.

Proof. Let {B, : 1 € P} be a pre-y-open fuzzy set cover of S(f(n)) in Y. For
in S(n), f(z) € f(S(n)). Since f is fuzzy pre*-y-continuous, {f~(B,) : u € P}
is pre-y-open fuzzy set cover of S(n) in X. Since 7 is fuzzy pre-y-compact relative
to X, there is a finite subcollection {f~'(B,) : u = 1,2,...,n} such that S(n) <

A FUB) = FUB). Thus S(7) = F(S) < F(FB) < A F(B,)
Hence f(n) is fuzzy pre-y-compact relative to Y.

Definition 3.4. Let (X, 7x) be a fts and v be a fuzzy operation on Tx. Then X
is called fuzzy locally pre-y-compact iff for each fuzzy point x, in X, 3 p such that

(i) xo € 115

(ii) p is fuzzy pre-y-compact.
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Remark 3.1. Every fuzzy pre-y-compact is fuzzy locally pre-y-compact.
The converse of the above Remark 3.1 need not be true as shown in the following
example.

Example 3.2. Let X = I = [0, 1] and consider the following fuzzy sets A;(z) =
1.30/v/2, Ag(z) = 1.31/v/2, As(x) = 1.32/v/2, ...V o € [. Let 7 = {4; :i €
Nt} U{0,1} Tt is clear that 7 is fuzzy topology on X. Define an operation « on 7
by 7(A) = A. Now the space X is fuzzy locally pre-y-compact, since the whole space
X satisfies the necessary condition. But the space X is not fuzzy pre-y-compact,
since X has no finite fuzzy pre-v-open subcover.

Theorem 3.7. Let (X, 7x) be a locally pre-y-compact fts and (Y, 1y) be a fts. If
a fuzzy continuous mapping f: (X, 7x) — (Y, 7v) is fuzzy pre*-y-open, then Y is
fuzzy locally pre-y-compact.

Proof. Suppose z, be a fuzzy point in Y with support z; and the value z. Then
xg is a fuzzy point in X with support y; and the value z. Now y; € f~'(zy).
Therefore f(zg) = x,. Since x5 is a fuzzy point in X and X is fuzzy locally pre-
~-compact, by definition there exists an element A\ € 7x such that zg € A and A is
fuzzy pre-y-compact. Now A € 7x and f is fuzzy pre*-y-open map, thus f(\) € 7y
and x, € f(A), also f()\) is fuzzy pre-y-compact in Y. Hence for a fuzzy point
q € Y there exist a member f(A\) € 7y such that z, € f(\) and f(A) is fuzzy
pre-y-compact. Thus (Y, 7y) is fuzzy locally pre-y-compact.

4. Fuzzy Pre-y-Closed Spaces
In this section, we introduce notions of fuzzy pre-y-closed, fuzzy pre-y-closed
relative to X. We also prove some theorems.

Definition 4.1. Let (X, 7x) be a fts and vy be an fuzzy operation on Tx. Then
X s called fuzzy pre-y-closed iff ¥V collection A of pre-y-open fuzzy sets such that

V A =1, there is a finite subcollection B of A such that (\/ pcl,(N\))(x) =1,V
AcA X reB
T e X,

Definition 4.2. Let (X, 7x) be a fts and vy be an fuzzy operation on Tx. A fuzzy
set X in X is called fuzzy pre-y-closed relative to X iff vV collection A of pre-y-open

fuzzy sets such that \/ p = X, there is a finite subcollection B of A such that
pneA

V pel, (1)(x) = A(w), ¥ @ € S().

neB

Remark 4.1. Every fuzzy pre-y-compact space is fuzzy pre-y-closed, but the con-
verse may not be true as shown in the below example.

Example 4.1. Let X(# 0) be a set and A,,(z) =1— L, V2 € X and m be a
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positive natural number. The collection {A,, : m is a positive natural number} is a
base for a fuzzy topology on X. Define a fuzzy operation v on the fuzzy topology as
v(A) = A, V open fuzzy sets. The collection {4, : m is a positive natural number}
is a pre-y-open fuzzy set cover of X. On the other hand, we obtain pcl,(\) = 1.
Thus the fts X is fuzzy pre-y-closed but not fuzzy pre-y-compact. ( see [2])

Theorem 4.1. A fts X is fuzzy pre-y-closed iff for every fuzzy pre-y-open filter-
bases P in X, ( N\ pcly(H)) # 0.
HeP

Proof. Let A be a pre-v-open fuzzy set cover of X and let for each finite collection

Bot A, (V pcly(B))(z) <1, for some x € X. Therefore ( A\ pcl,(H))(xz) > 0, for

BeB HeB
some x € X. Hence {pcl,(B) : B € A} = P forms a fuzzy pre-y-open filter bases

in X. Since A is a pre-y-open fuzzy set cover of X, we obtain ( A B) = 0, which
BeA

implies ( A pcl,(pel,(H))(x) = 0, which is a contradiction. Then each pre-y-open
BeA
fuzzy set cover A of X has a finite subcollection B such that (\/ pcl,(B)(x) =1,
BeB

V x € X. Thus X is fuzzy pre-v-closed.
Conversely, assume that 3 a fuzzy pre-y-open filter bases P in X such that

A pcl,(H) = 0. Therefore (\/ pcly(H))(z) = 1,V z € X and thus A =
HeP HeP

{(pcl,(H)) : H € A)} is a pre-y-open fuzzy set cover of X. Since the fts X is fuzzy

pre-y-closed, A has a finite subcollection B such that ( \/ pcl,(pcl,(B))(z) = 1,
HeB

V 2z € X, and thus A (pcl,(pcl,(H)) =0, Hence A H = 0, which is a contradic-
HeB HeB
tion. Thus A pcl,(H) # 0.

HeP

Theorem 4.2. A fuzzy subset o in a fts X is fuzzy pre-y-closed relative to X iff V
fuzzy pre-y-open filter bases P in X, ( A\ pcl, (X)) A p# 0, 3 a finite subcollection
AEP

Q of P such that ( \ A) q p.
AeQ
Proof. Let u be a fuzzy pre-v-closed set relative to X. Suppose P be a fuzzy

pre-y-open filterbases in X such that for each finite subcollection Q of P, then
(A A) ap, but (A pedy(\)) Ap = 0. Then V z € S(u), (A pely(A))(z) = 0.
A€EQ AEP AEP

Therefore (\/ pcly(N))(z) =1,V € S(u). So = {pcly(N) : A € P)} is a pre-
AEP
~v-open fuzzy set cover of P and thus 3 a finite sub collection Q of P, such that

(AVQpclw(pclw(A)) > p, 50 that A/\Q(pclw(pclw(h)) = A (pinty(pcly(A)) < . Thus

AEQ
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A A <7 Thus A A @ p. This is a contradiction.
AeQ A€Q

Conversely, assume that p is not fuzzy pre-vy-closed relative to X, then 3 a pre-
~v-open fuzzy set A that covers p such that for each finite subcollection B of A, we

obtain (B\E/chlv(B))(x) < u(x), for some x € S(u) and thus (B/E\B(pclv(B))(x) >

(u(z)) > 0 for some x € S(p). Thus P = {pcl,(B) : B € A)} forms a fuzzy

pre-y-open filterbases in X. Let {pcl,(B) : B € B)} be a finite subcollection such

that ( A\ pcly(N)) @ p. Therefore pp < \/ pely(B). So 3 a finite subcollection
BeB BeB

B of A such that © < \/ pcl,(B), which is a contradiction. Then V finite sub
BeB

collection @ = {(pcl,(B) : B € B} of P, we obtain ( A pcl,()\)) ¢ p. There-
BeB

fore by hypothesis ( A pcly(pcly (X)) A 1 # 0. Therefore 3 = € S(u) such that
BeA

(B/E\Apclw(pclw(k)))(w) > 0. Thus (' (pely(pely(M))(2) = (V (pinty(pcly(M))))

BeA BeA
() < 1 and thus (\/ B) (z) < 1, which is a contradiction to fact that A is a
BeA
pre-v-open fuzzy set cover of y. Hence p is a fuzzy pre-y-closed relative to X.

Theorem 4.3. Let f: (X, 7x) = (Y, 7v) is an onto fuzzy pre*-y-continuous. If
X is fuzzy pre-y-closed space, then Y is also a fuzzy pre-y-closed.

Proof. Let {B, : i € P} be a pre-y-open fuzzy set cover of Y. Since f is fuzzy pre*-
y-continuous, {f~1(B,) : u € P} is pre-y-open fuzzy set cover of X. By definition

of covering, 3 a finite subcollection Q of P such that (\/ pel,(f~(B,) = 1. Since
peQ

fis an onto, 1= F(1) = F(V pels(f(B))) < pels (0 (B) = el (B,).

Thus Y is fuzzy pre-vy-closed.
5. Fuzzy Pre-y-Connected Spaces

Definition 5.1. Let (X, 7x) be a fts and v be a fuzzy operation on Tx. Then
(X, 7x) is called fuzzy pre-y-connected if it has no proper pre-y-clopen (pre-y-open
and pre-y-closed) fuzzy subset. [ A fuzzy subset u in X is proper if u # 0 and
o # 1.

Theorem 5.1. A fts (X, 7x) is fuzzy pre-y-connected iff it has no non zero pre-
~v-open fuzzy subsets A and p such that A+ p = 1.

Proof. If such A and p exist, then A is a proper fuzzy set which are both pre-v-
open and pre-v-closed fuzzy set in X. Conversely, if possible assume that X is not
fuzzy pre-y-connected. Then it has a proper fuzzy set A which are both pre-y-open
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and pre-y-closed fuzzy set. Let us take y = A°. Hence p is a pre-v-open fuzzy set
such that p# 0 and A + p = 1.

Corollary 5.1. A fts (X, 7x) is fuzzy pre-y-connected iff it has no non zero pre-
v-open fuzzy subsets A and p such that \+p=1and A\+punp = A+ p=1.
Proof. Evident.

Remark 5.1. The fuzzy product of fuzzy pre-y-connected spaces may not be a fuzzy
pre-y-connected as shown in the following example.

Example Let X; = [0,1], ¢ € I. For some j,k € I, let 7x, = {0,1,A} and
Tx, = {0,1,A°}, where A(z) = 1/3, for 0 < 2 < 1 and 7y, = {0,1} for each
i € I and i # j, i # k. Define an operation v on 7x; and 7y, by 7(\) = A and
7(A¢) = A respectively. Then each X is fuzzy pre-y-connected but [],.; X; is not
so as 7([];c; Xi) contains non zero pre-y-open fuzzy sets A;'(X) and A, (A°) such
that for every x € [[..; Xi, Aj_l()\) + AN () = 1. [3]

Definition 5.2. Let (X, 7x) be a fts and v be a fuzzy operation on 7x. A fuzzy
subset Y in X is called fuzzy pre-y-connected if (Y, 7v) is a fuzzy pre-y-connected.

il

Theorem 5.2. Let (X, Tx) be a fts and vy be a fuzzy operation on 7x. Y is a fuzzy
pre-y-connected subset of X and A\, p are non empty pre-y-open fuzzy subsets of
X such that N+ p = 1y, then either A\ANY =1y or p ANY = 1,.

Proof. Assume that there exists z1, 23 € Y such that A(z1) # 1 and u(Xs,) # 1.
Then A+ =1 implies that AAY + pAY =1, where A\AAY # 0 and pu AY # 0.
Therefore by Theorem 5.1, Y is not a fuzzy pre-y-connected.

Definition 5.3. Let (X, 7x) be a fts and ~y be a fuzzy operation on 7x. Two pre-
v-open fuzzy sets X and p in X are called fuzzy pre-y-separated if N+ p < 1 and
A<l

Theorem 5.3. The image of a fuzzy pre-y-connected space under a fuzzy pre*-vy-
continuous mapping 1s fuzzy pre-y-connected.

Proof. Let (X, 7x) be a fuzzy pre-y-connected fts and f : (X, 7x) — (Y, 7v)
be a continuous onto mapping. If possible suppose that (Y, 7v) is not fuzzy pre-
~v-connected. Then 3 two non empty pre-y-open fuzzy sets A and pu of Y such
that A+ = 1. Therefore, f~1(\) and f~'(u) are two non empty pre-y-open fuzzy
subsets of X such that f~'(\) + f~!(u) = 1, which implies X is not fuzzy pre-v-
connected. This is a contradiction.

Definition 5.4. Let (X, 7x) be a fts and 7 be a fuzzy operation on Tx. Then X
15 called fuzzy strongly pre-y-connected if it has no non zero pre-y-closed fuzzy sets
1 and pg such that py + pe < 1. If X is not fuzzy strongly pre-y-connected then it
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15 said to be fuzzy weakly pre-y-connected.

Theorem 5.4. A fts X is fuzzy strongly pre-y-connected iff it has no non zero
pre-y-open fuzzy sets Ay and Ny such that A\ # 1, Ao #£ 1 and Ay + Ay > 1.
Proof. Suppose that X is not a fuzzy strongly pre-y-connected. So X is fuzzy
weakly pre-y-connected.
< if it has non zero pre-y-closed fuzzy sets py and ps such that
p + e < 1.
& if it has non zero pre-y-open fuzzy sets A = u§ and Ao = p§ such
that )\1 %l, Ag#land /\1+/\2 Zl

Remark 5.2. Every fuzzy strongly pre-y-connectedness is fuzzy pre-y-connectedness
but the converse need not be true as shown in the following example.

Example 5.3. Let X = [0,1] and for 0 <z <1, p(x) = 0.6 and 7x = {1, 0, u}.
Clearly (X, 7x) is a fts. Define v : 7x — I by v(1) = 1, v(0) = 0, v(u) = p.
Then the fts X is a fuzzy pre-y-connected but not strongly pre-y-connected.

References

[1] Chang, C. L., Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968),
182-189.

[2] Coker, D., and Haydar Es, A., On fuzzy S-closed spaces, Doga Tu J. Math.,
(1987), 145-152.

[3] Fatteh, U. V. and Bassan, D. S., Fuzzy Connectedness and Its Stronger
Forms, Journals of Mathematical Analysis and Applications, 111 (1985), 449-
464.

[4] Ganguly, S. and Saha, S., A Note on compactness in fuzzy setting, Fuzzy
Sets and Systems, 34 (1990), 117-124.

[5] Hariwan Z. Ibrahim., Weak forms of y-open sets and new separation axioms,
Int. J. Sci. Eng. Res., 3(4) (2012), 1-4.

[6] Kalita, B., and Das, N. R., Some Aspects of Fuzzy operations, The Journal
of Fuzzy Mathematics, 19(3) (2011), 531-540.

[7] Kasahara, S., Operation-Compact spaces, Math. Japonica, 24 (1979), 97-105.

[8] Sivashanmugaraja, C., Fuzzy Pre*-7y-Open and Fuzzy Pre*-~-Continuous Map-
pings in Fuzzy Topological Spaces, International journal of Mathematics
Trends and Technology, 67(4) (2021), 101-1009.



Fuzzy Pre-y-Compact, Fuzzy Pre-y-Connected and Fuzzy Pre-y-Closed Spaces 151

[9] Sivashanmugaraja, C., More on Fuzzy pre-y-open and Fuzzy Pre-v-closed
Sets, South East Asian Journal of Mathematics and Mathematical Sciences,
Special Issue, Accepted.

[10] Sivashanmugaraja, C., Operation approaches on fuzzy pre-y-continuity and
fuzzy weakly pre-y-continuity in fuzzy topological spaces, Applied Science
and Computer Mathematics, Accepted.

[11] Sivashanmugaraja, C., and Vadivel, A., Weak forms of fuzzy v-open sets,
Global Journal of Pure and Applied Mathematics, 13 (2017), 251-261.

[12] Zadeh, L. A., Fuzzy sets, Information and Control, 8 (1965), 338-353.



152 South FEast Asian J. of Mathematics and Mathematical Sciences



